Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Cardiology ; (12): 750-758, 2023.
Artigo em Chinês | WPRIM | ID: wpr-984713

RESUMO

Objective: To investigate the diagnostic efficiency and clinical application value of an artificial intelligence-assisted diagnosis model based on a three-dimensional convolutional neural network (3D CNN) on echocardiographic videos of patients with hypertensive heart disease, chronic renal failure (CRF) and hypothyroidism with cardiac involvement. Methods: This study is a retrospective study. The patients with hypertensive heart disease, CRF and hypothyroidism with cardiac involvement, who admitted in Henan Provincial People's Hospital from April 2019 to October 2021, were enrolled. Patients were divided into hypertension group, CRF group, and hypothyroidism group. Additionally, a simple random sampling method was used to select control healthy individuals, who underwent physical examination at the same period. The echocardiographic video data of enrolled participants were analyzed. The video data in each group was divided into a training set and an independent testing set in a ratio of 5 to 1. The temporal and spatial characteristics of videos were extracted using an inflated 3D convolutional network (I3D). The artificial intelligence assisted diagnosis model was trained and tested. There was no case overlapped between the training and validation sets. A model was established according to cases or videos based on video data from 3 different views (single apical four chamber (A4C) view, single parasternal left ventricular long-axis (PLAX) view and all views). The statistical analysis of diagnostic performance was completed to calculate sensitivity, specificity and area under the ROC curve (AUC). The time required for the artificial intelligence and ultrasound physicians to process cases was compared. Results: A total of 730 subjects aged (41.9±12.7) years were enrolled, including 362 males (49.6%), and 17 703 videos were collected. There were 212 cases in the hypertensive group, 210 cases in the CRF group, 105 cases in the hypothyroidism group, and 203 cases in the normal control group. The diagnostic performance of the model predicted by cases based on single PLAX view and all views data was excellent: (1) in the hypertensive group, the sensitivity, specificity and AUC of models based on all views data were 97%, 89% and 0.93, respectively, while those of models based on a single PLAX view were 94%, 95%, and 0.94, respectively; (2) in the CRF group, the sensitivity, specificity and AUC of models based on all views data were 97%, 95% and 0.96, respectively, while those of models based on a single PLAX view were 97%, 89%, and 0.93, respectively; (3) in the hypothyroidism group, the sensitivity, specificity and AUC of models based on all views data were 64%, 100% and 0.82, respectively, while those of models based on a single PLAX view were 82%, 89%, and 0.86, respectively. The time required for the 3D CNN model to measure and analyze the echocardiographic videos of each subject was significantly shorter than that for the ultrasound physicians ((23.96±6.65)s vs. (958.25±266.17)s, P<0.001). Conclusions: The artificial intelligence assisted diagnosis model based on 3D CNN can extract the dynamic temporal and spatial characteristics of echocardiographic videos jointly, and quickly and efficiently identify hypertensive heart disease and cardiac changes caused by CRF and hypothyroidism.


Assuntos
Masculino , Humanos , Inteligência Artificial , Estudos Retrospectivos , Ecocardiografia/métodos , Cardiopatias , Hipertensão , Hipotireoidismo
2.
Chinese Medical Journal ; (24): 415-424, 2021.
Artigo em Inglês | WPRIM | ID: wpr-878071

RESUMO

BACKGROUND@#The current deep learning diagnosis of breast masses is mainly reflected by the diagnosis of benign and malignant lesions. In China, breast masses are divided into four categories according to the treatment method: inflammatory masses, adenosis, benign tumors, and malignant tumors. These categorizations are important for guiding clinical treatment. In this study, we aimed to develop a convolutional neural network (CNN) for classification of these four breast mass types using ultrasound (US) images.@*METHODS@#Taking breast biopsy or pathological examinations as the reference standard, CNNs were used to establish models for the four-way classification of 3623 breast cancer patients from 13 centers. The patients were randomly divided into training and test groups (n = 1810 vs. n = 1813). Separate models were created for two-dimensional (2D) images only, 2D and color Doppler flow imaging (2D-CDFI), and 2D-CDFI and pulsed wave Doppler (2D-CDFI-PW) images. The performance of these three models was compared using sensitivity, specificity, area under receiver operating characteristic curve (AUC), positive (PPV) and negative predictive values (NPV), positive (LR+) and negative likelihood ratios (LR-), and the performance of the 2D model was further compared between masses of different sizes with above statistical indicators, between images from different hospitals with AUC, and with the performance of 37 radiologists.@*RESULTS@#The accuracies of the 2D, 2D-CDFI, and 2D-CDFI-PW models on the test set were 87.9%, 89.2%, and 88.7%, respectively. The AUCs for classification of benign tumors, malignant tumors, inflammatory masses, and adenosis were 0.90, 0.91, 0.90, and 0.89, respectively (95% confidence intervals [CIs], 0.87-0.91, 0.89-0.92, 0.87-0.91, and 0.86-0.90). The 2D-CDFI model showed better accuracy (89.2%) on the test set than the 2D (87.9%) and 2D-CDFI-PW (88.7%) models. The 2D model showed accuracy of 81.7% on breast masses ≤1 cm and 82.3% on breast masses >1 cm; there was a significant difference between the two groups (P < 0.001). The accuracy of the CNN classifications for the test set (89.2%) was significantly higher than that of all the radiologists (30%).@*CONCLUSIONS@#The CNN may have high accuracy for classification of US images of breast masses and perform significantly better than human radiologists.@*TRIAL REGISTRATION@#Chictr.org, ChiCTR1900021375; http://www.chictr.org.cn/showproj.aspx?proj=33139.


Assuntos
Humanos , Área Sob a Curva , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , China , Aprendizado Profundo , Curva ROC , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA